

(ISO/IEC - 27001 - 2013 Certified)

WINTER – 19 EXAMINATION

Subject Name: Fluid Mechanics & Machinery 22445 **Model Answer Subject Code:**

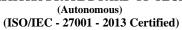
Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub. Q. No.	Answer	Marking Scheme
1.		Attempt any <u>FIVE</u> of the following:	10 Marks
	a)	Compare water and oil of specific gravity 0.8 on the basis of density & viscosity.	
	Ans	Soil = (Density) $_{oil}$ / (Density) $_{water}$ $0.8 = (Density)_{oil}$ / 1000 (Density) $_{oil}$ = 800 kg/ m ³ Here it is not possible to find out viscosity	02 Marks
	b)	The pressure in the tyres of the four wheeler was measured as 33. State the unit of pressure in this case. Name the device use to measure this pressure.	
	Ans	The unit of pressure 33 in this case is PSI (Pound per square Inch). The name of device used to measure is Bourdon Tube Pressure Gauge	01 Mark 01 Mark
	c)	Show the difference between hydraulic gradient line & total energy line with the help of suitable diagram.	

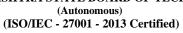
(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

	(150/1EC - 2/001 - 2015 Cet tilled)	ENGINEERIN
Ans	Total energy line Hydraulic gradient line Centre line of pipe	02 Mark
d)	Write Chezy's equation for frictional losses and list all the terms involved in it.	
Ans	V=C√mi	01 Marl
	Where; V = velocity of water in pipe, m = hydraulic mean depth =A/P = d/4 I = loss of head per unit length, C = Chezy's constant	01 Marl
e)	State the need of surge tank in hydroelectric power plant.	
Ans	 It is the tank provided in the path of penstock to avoid pulsating discharge at inlet of turbines. To reduce effect of water hammer surge tanks are provided. During flow of water from reservoir to turbine through penstock pressure surges are created to compensate these surges surge tank is provided. 	01 Mark for each point (any 2
		point)
f)	State the difference between Static head & Manometric head in centrifugal pump.	
Ans	Static head: The sum of suction head & delivery head is known as static head.	01 Mark
	Manometric head: It is the total head that pump is required to develop. This include all losses. This is equal to difference between pressure head at inlet & outlet of pump.	01 Mark
g)	Draw indicator diagram for reciprocating pump showing the effect of accelerating head and frictional head.	
Ans	hatm had had c had c stroke length OUR CENTERS:	02 Mar


KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228

2.2		Attempt any THREE of the following:	12 Marks
	a)	Draw sketch of Bourdon tube pressure gauge and state its advantages.	
Aı	ns	Spring Tip Pinion Adjustable Link Sector Segment lever Pivot Socket So	02 Marks for dia.
		Advantages: (any four) These give more accurate results. Bourdon tube cost low. Bourdon tube are simple in construction. They can be modified to give electrical outputs. They are safe even for high pressure measurement. Accuracy is high especially at high pressures.	1/2 Marks for any 4 adv.
	b)	A circular plate 3.5 m diameter is fully immersed in water at an angle of 45° with the vertical. Determine the total pressure and the centre of pressure on the plate when its centre is 3 m below the free surface of water.	
Aı	ns	$J = 3.5 \text{ m}$ $Q = 45^{\circ}$ $X = 3 \text{ m}$ $Area of circular plate = \frac{\pi}{4}J^{2} \therefore I_{q} = 7.366 \text{ m} + 4 = \frac{\pi}{4} \times (3.5)^{2}$	01 Mark
		$= \frac{1}{4} \times (3-5)$ $\therefore q = 9.62 \text{ m}^2$ OUR CENTERS:	01 Mark

 	· · · · · · · · · · · · · · · · · · ·	ENGINEERING
	Total Pressure = W.A.X	
	$=9810\times9.62\times3$	
	= 283149.78 N	
	:. Total Pressure = 283.149 KN	01 Mark
	Centre of pressure = $\frac{I_G}{Ax}$. $\sin \phi + x$	
	$= \frac{7.366}{9.62 \times 3} \times 5m^{2} + 3$	
	: Centre of Pressure = 3.12.76 m	01 Mark
,		
c)	Explain Bernoulli's theorem with neat sketch. State its two important assumptions.	
Ans	This theorem states that whenever there is continuous flow of liquid the total energy at every section remains same provided that there is no any addition or loss of energy.	01 Mark
	$P/W + V^2/2g + Z = constant$	for statement
	Where, P/W = Pressure energy	
	$V^2/2g = Kinetic energy$	
	Z = Potential energy	
	Let us consider a conduit having 2-sections.	
	Now, By using Bernoulli's Theorem,	
	Total head at section 1 = Total head at section 2	01 Mark
	$P_1/W + V_1^2/2g + Z_1 = P_2/W + V_2^2/2g + Z_2$	
	OUR CENTERS :	
 _	VUR UDITIDRU I	



MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

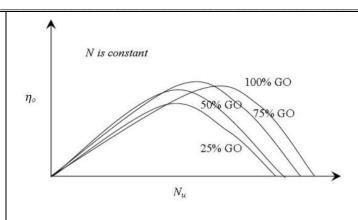
01 Mark for sketch Datum line **Assumptions:** (any two) 1. The fluid is ideal. The flow is steady & continuous. 3. The flow is incompressible. 01 Mark Velocity is uniform over the cross section. 5. The flow is irrotational. d) Compare i) Steady and uniform flow ii) Laminar and turbulent flow (Two important points) Ans Steady flow: The flow is said to be steady when the flow characteristics, such as velocity, pressure, density and temperature do not change with time. 01 Mark Water flowing through a tap at a constant rate is an example of steady flow. **Uniform flow:-** The flow in which velocity at a given time does not change with respect to space (length of direction of flow) is called as uniform flow. 01 Mark This term is generally applied to flow in channels. Laminar flow:- The flow in which each liquid particle has definite path and path of individual particles do not cross each other is called as laminar flow. 01 Mark e.g. Movement of blood in human body, the flow of thick oil through a small tube. Turbulent flow:- Flow in which each liquid particle does not have a definite path and the path of 01 Mark individual particles also cross each other is called as turbulent flow. e.g. The flow of river at the time of flood is turbulent flow.

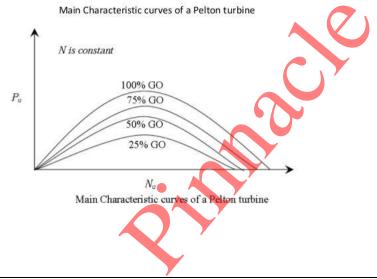
3		Attempt any THREE of the following	12
	a)	An oil of specific gravity 0.7 is flowing through venturimeter having inlet diameter 35 cm and throat diameter 20cm. The oil-mercury differential manometer shows a reading of 30 cm. Calculate discharge of oil through the horizontal venturimeter. Take Co: 0.98.	
	Ans:	Given data: i) Sd = 0.8 ii) Sh = 13.6 iii) Reading of differential manometer = 25 cm iv) dia at inlet d1=35 cm v) dia at throat d2=20 cm.	
		Difference of pressure head = h = x{ Sh/ Sd - 1}• = 25{13.6/0.7 - 1} = 552.8 cm of oil. Area at inlet (a1) = $\pi/4$ x d1 ² = $\pi/4$ x 35 ² = 962.11 cm ²	01
		Area at throat (a2) = $\pi/4$ x d2 ² = $\pi/4$ x 20 ² = 314.16 cm ²	01
		Discharge $Q = cd x a1 a2/(a1^2 - a2^2)^{1/2} x (2gh)^{1/2}$	01
		$Q = 0.98 \times 962.11 \times 314.16 / (925655.6 - 98696.5)^{1/2} \times (2 \times 981 \times 552.8)^{1/2}$	
		= 339161.9 cm3 /sec = 339.17 lit/sec	01
	b)	Explain water hammer phenomenon and state the remedies measures to avoid it.	
	Ans:	Water hammer phenomenon: commonly occurs when a valve closes suddenly at an end of a pipeline system, and a pressure wave propagates in the pipe. Water hammer (or hydraulic shock) is the momentary increase in pressure inside a pipe caused by a sudden change of direction or velocity of the liquid in the pipe. Water hammer can be particularly dangerous because the increase in pressure can be severe enough to rupture a pipe or cause damage to equipment.	2 Marks
		Effects of water hammer are as follows 1) Due to rise in pressure the pipe may burst. 2) Erosion of inside surface of pipe. 3) Pressure drop in pipe Remedies for water hammer: 1) Controlling Velocity of flow. 2) Use of appropriate length of pipe. 3) Elastic properties of pipes.	2 Marks
		 4) Provide surge tank before the valve on main pipe line. 5) Provide bypass pipe near the valve. 6).Provide Air traps or stand pipes (open at the top) to absorb the potentially damaging forces. caused by the moving water. 7) Use high strength pipes. 8) Close the valve slowly. 	
	c)	List various minor losses in fluid flow. Explain any one type with sketch and formula.	
	Ans:	List various minor losses	02 Marks

	b) Sudden contraction of pipe	
	c) Pipe fittings	
	d) Bend in pipe	
	e) Loss of head at Entry.	
	f) Loss of head at Exit.	
	Expansion Minor Loss, $h_k = \frac{(V_1 - V_2)^2}{2g}$ When V1, V2 are velocities on the two sides or the section at which sudden enlargement occurs. The head loss resulting from pipe expansion may be greatly reduced by introducing gradual pipe transition known as diffuser.	02 Marks
d)	Draw velocity diagram for symmetrical and moving curved vane when jet strikes at one end	
u)	with certain velocity at certain angle and meaning the vane from other end. State the	
	meaning of terminologies used in the diagram.	
Ans:	velocity diagram for symmetrical and moving curved vane:	
	G F B V _t , V _t , B V _t , V _t	02 Marks
	• V1 = Velocity of the jet (AB), while entering the vane,	
	• V2 = Velocity of the jet (EF), while leaving the vane,	
	 u1, u2 = Velocity of the curved vane at inlet & outlet (AC, FG) α = Angle with the direction of motion of the vane, at which the jet enters the vane, β = Angle with the direction of motion of the vane, at which the jet leaves the vane, Vr1 = Relative velocity of the jet and the vane (BC) at entrance (it is the vertical difference between V1 and u1) 	02 Marks
	• Vr2 = Relative velocity of the jet and the vane (EG) at exit (it is the vertical difference	
	between V2 and u2) • Θ = Angle, which Vr1 makes with the direction of motion of the vane at inlet (known as	
	vane angle at inlet),	
	• β = Angle, which Vr2 makes with the direction of motion of the vane at outlet (known as	
	vane angle at outlet),	
	• Vw1 = Horizontal component of V1 (AD, equal to). It is a component parallel to the	
	direction of motion of the vane (known as velocity of whirl at inlet),	
	• Vw2 = Horizontal component of V2 (FH, equal to). It is a component parallel to the	
	direction of motion of the vane (known as velocity of whirl at outlet),	
	• Vf1 = Vertical component of V1 (BD, equal to). It is a component at right angles to the direction of motion of the vane (knowlesseendiffer flow at inlet),	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

		• Vf2 = Vertical component of V2 (EH, equal to). It is a component at right angles to the direction of motion of the vane (known as velocity of flow at outlet)	
	e)	A jet of water of diameter 30 mm moving with velocity of 35 m/s ,strikes a curved symmetrical plate at the center Find the force exerted by jet of water in direction of jet. If jet is deflected through an angles of 150° at outlet of curved plate. If the vane is moving with the velocity of 20 m/s in the direction of jet .Find out the force exerted .	
	Ans:	Velocity of jet V = 35 m/s Velocity of vane u = 20 m/s The value of θ i.e. angle made by tip of vane at outlet as Θ = 180 – angle of deflection = 180-150 = 30° Calculate: Force exerted ny jet diameter of nozzle as 30 mm $a = \pi/4 \times d^2 = \pi/4 \times 0.03^2 = 7.07 \times 10^{-4}$ Force exerted by the jet on vane $Fx = Pa (v - u)^2 (1 + cos\theta)$ Fx = 1000x 7.07 x 10 ⁻⁴ (35-20) ² (1+ cos 30)= 296.83 N	2 Marks 2 Marks
		Force exerted by the jet on vane = 296.83 N	
4		Attempt any THREE of the following	
	a)	Draw the layout of hydroelectric power plant and classify the turbines used in it.	
		Layout of hydroelectric power plant: DAM PENSTOCK TURBINE NOZZLE Layout of a hydro-eletric power plant.	2 Marks
		Classification of the hydraulic turbines:	2 Marks
		According to the type of energy available at inlet to the turbine 1) impulse turbine and 2) Reaction turbine According to direction of flow through runner 1) tangential flow turbine 2) radial flow turbine 3) axial flow turbine 4) mixed flow turbine According to the head available at interporter in the flow turbine 3.	


(ISO/IEC - 27001 - 2013 Certified) 1) Low head turbine (2 m to 15 m) 2) Medium head turbine (16 m to 70 m) 3) High head turbine (71 m and above) According to the specific speed of the turbine 1)low specific speed 2)medium specific speed 3)High specific speed Explain the Need of draft tube in reaction turbine .state the types of draft tube used in b) Draft tube is a pipe of gradually increasing diameter which connects the exit of runner of Ans: turbine to tail race. In case of reaction turbine, one part of available head is converted into K.E before entry to runner and rest of energy is in the form of pressure energy. This pressure energy is gradually converted into runner, thus the velocity leaving the runner is at high velocity. Draft converts K.E to pressure head . also 2 Marks 1) To decrease the pressure at the runner exit to a value less than atmospheric pressure and thereby increase the effective working head. ii) To recover a part of electric energy into pressure head at the exit of draft tube. This enables easy discharge to atmosphere. **Types of draft tube:** i. Conical draft tube. ii. Simple elbow draft tube. iii. Moody spreading draft tube. iv. Elbow draft tube with circular cross section at inlet and rectangular at outlet. 2 Marks (b) SIMPLE ELBOW (c) MOODY SPREA TUBE (a) CONICAL DRAFT (d) DRAFT TUBE WITH CIRCULAR INLET AND RECTANGULAR OUTLE Draw and explain performance and operating characteristics curves of a Pelton turbine c) Ans: 2 Marks The followings are the important **characteristic curves** of a **turbine**: Main **Characteristic** Curves or Constant Head Curve. ... The speed of the turbine is varied by changing load on the **turbine**. For each value of the speed, the corresponding values of the power (P) and discharge (Q) are obtained. OUR CENTERS:



2 Marks

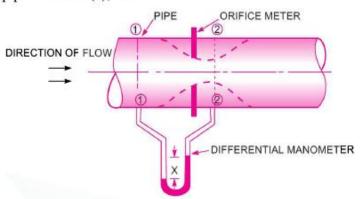
(ISO/IEC - 27001 - 2013 Certified)

OPERATING CHARACTERISTIC CURVES / Const. Speed curves • Tests are performed at constant speed. • Const. speed is attained by regulating the gate opening thereby varying the discharge flowing through the turbine as the load varies. • Head may or may not kept constant.

•		T	T	4361
Ans:	Sr.No	Fault	remedies	4 Marks
	1	Pump fails to start pumping	Reprime the pump, Clean the impeller	
			Reduce suction lift, Increase the speed	
	2	Pump stops working	Remove air by priming	
			Reduces suction lift	
	3	Pump is not lifting water up to	Plug leakage	
		capacity	Replace the damaged or worn out parts	
	4	Pump has very low efficiency	Reduce the speed	
			Correct the direction of rotation of impeller	
			Reduce the discharge, Repair affected	
			parts	
f)	Discuss the	factors considered for selection of	f pump	
Ans:	1) Pres	sure: Pump is ued to pressurize th	e fluid in system according to need of pressure	
	we o	can select pump as belovOUR CE	NTERS:	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

		434 1
	Types of pump Pressure range (In bar)	4 Marks
	External gear pump 300	Any four
	Internal gear pump 350 Fixed vane pump 175	points
	Variable vane pump 125	Pomis
	Screw pump 175	
	Axial piston type 700 More than 500 bar)	
	2) Speed of pump: if the speed of pump is increased beyond its rated speed then	
	problems like cavitations takes place. This problem directly affect on efficiency &	
	working of hydraulic system.	
	3) Flow of pressurized oil: Vol. of oil at output is measured in litre per min have flow	
	of oil deciding speed of actuators	
	4) Efficiency of pump:	
	Selection of pump depends on required efficiency like volumetric efficiency,	
	mechanical efficiency, overall efficiency 5) Oil compatibility:	
	The meaning of compatibility is nothing but acceptance .each pump is compatible to	
	hy.oil but if used different oil, then pump will not give a good performance.	
	6) cost of pump:	
	There are different varieties o pumps available in market according to application	
	we can choose it by economical aspect cost of pump & its spares should be less.	
5	Attempt any TWO of the following:	12
a)	Derive equation for discharge through orifice meter with the help of neat sketch.	
Ans:	Orifice Meter or orifice Plate: It is a device used for measuring the rate of flow of a fluid through a pipe. It is Cheaper device as compared to venturimeter. It also works on the same principle as that of venturimeter. It consist of flat circular plate which has a cirxular sharp edged hole called orifice, which is concentric with the pipe. The orifice diameter is kept generally 0.5 times the diameter of the pipe, though it may vry from 0.4 to 0.8 times the pipe diameter. A differential manometer is connected at section (1), which is at a distance of about 1.5 to 2.0 times the pipe diameter upstream from the orifice plate, and at section (2), which is at a distance of about half the diameter of the orifice on the downstream side from the orifice plate.	
	OUR CENTERS:	


(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Let p_1 = pressure at section (1),

 v_1 = velocity at section (1),

 a_1 = area of pipe at section (1), and

2 Marks

 p_2 , v_2 , a_2 are corresponding values at section (2). Applying Bernoulli's equation at sections (1) and (2), we get

$$\frac{p_1}{\rho g} + \frac{v_1^2}{2g} + z_1 = \frac{p_2}{\rho g} + \frac{v_2^2}{2g} + z_2$$

$$\left(\frac{p_1}{\rho g} + z_1\right) - \left(\frac{p_2}{\rho g} + z_2\right) = \frac{v_2^2}{2g} - \frac{v_1^2}{2g}$$

$$\left(\frac{p_1}{\rho g} + z_1\right) - \left(\frac{p_2}{\rho g} + z_2\right) = h = \text{Differential head}$$

$$h = \frac{v_2}{2g} - \frac{v_1^2}{2g}$$
 or $2gh = v_2^2 - v_1^2$

or

$$v_2 = \sqrt{2gh + v_1^2}$$
 ...(a)

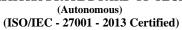
Now section (2) is at the vena-contracta and a_2 represents the area at the vena-contracta. If a_0 is the area of orifice then, we have

$$C_c = \frac{a_2}{a_0}$$

where C_c = Co-efficient of contraction

$$\therefore \qquad \qquad a_2 = a_0 \times C_c \qquad \qquad \dots (ii)$$

By continuity equation, we have


$$a_1 v_1 = a_2 v_2$$
 or $v_1 = \frac{a_2}{a_1} v_2 = \frac{a_0 C_c}{a_1} v_2$...(iii)

Substituting the value of v_1 in equation (i), we get

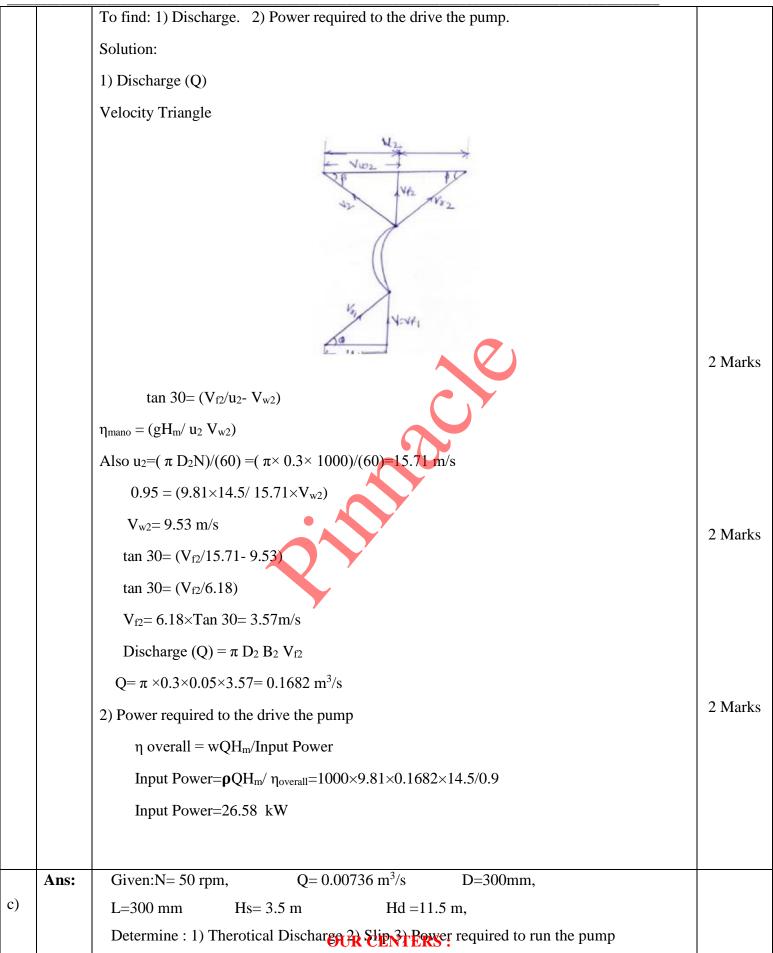
$$v_2 = \sqrt{2gh + \frac{a_0^2 C_c^2 v_2^2}{a_1^2}}$$

2 Marks

	or $v_2^2 = 2gh + \left(\frac{a_0}{a_1}\right)^2 C_c^2 v_2^2 \text{ or } v_2^2 \left[1 - \left(\frac{a_0}{a_1}\right)^2 C_c^2\right] = 2gh$ $\therefore v_2 = \frac{\sqrt{2gh}}{\sqrt{1 - \left(\frac{a_0}{a_1}\right)^2 C_c^2}}$ $\therefore \text{ The discharge } Q = v_2 \times a_2 = v_2 \times a_0 C_c$ $= \frac{a_0 C_c \sqrt{2gh}}{\sqrt{1 - \left(\frac{a_0}{a_1}\right)^2 C_c^2}}$ $\therefore C_d = C_c \frac{\sqrt{1 - \left(\frac{a_0}{a_1}\right)^2 C_c^2}}{\sqrt{1 - \left(\frac{a_0}{a_1}\right)^2 C_c^2}}$ $\therefore C_c = C_d \frac{\sqrt{1 - \left(\frac{a_0}{a_1}\right)^2 C_c^2}}{\sqrt{1 - \left(\frac{a_0}{a_1}\right)^2 C_c^2}}$	2 Marks
	Substituting this value of C_c in equation (iv), we get $Q = a_0 \times C_d \frac{\sqrt{1 - \left(\frac{a_0}{a_1}\right)^2 C^2}}{\sqrt{1 - \left(\frac{a_0}{a_1}\right)^2}} \times \frac{\sqrt{2gh}}{\sqrt{1 - \left(\frac{a_0}{a_1}\right)^2} C_c^2}$ $\approx \frac{C_a a_0 \sqrt{2gh}}{\sqrt{1 - \left(\frac{a_0}{a_1}\right)^2}} = \frac{C_d a_0 a_1 \sqrt{2gh}}{\sqrt{a_1^2 - a_0^2}}.$	
b)	A pipe line 2000m long carries water having pressure of 50 bar at inlet. The pressure drop over the length of pipe is 1000 kN/m ² If the power transmitted through pipr is 110kw and coefficent of friction is 0.0055 Find 1) Diameter of pipe 2) Efficiency of transmission	
Ans:	Given: L= 2000 m, $P=50 \text{ bar}=50 \text{ x } 10^5 \text{ N/m}^2$, $dP=1000 \text{ kN/m}^2$ $P=110 \text{ kW}$, f=0.0055 1) Diameter of pipe Presure head at inlet $H=P/\rho g=50 \text{ x } 10^5/(1000 \text{ x } 9.81) = 509.7$ m	
	OUR CENTERS :	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

a)	Explain Construction and working of Francis Turbine with neat sketch.	
	Attempt any TWO of the following:	12
	maximum.	12
	• Hence Force excerted by jet on symmetrical curved vane at centre with tip angle θ is	
	• Because it contains $(1+\cos\theta)$ term and as θ varies between to $(1+\cos\theta)90^{-0}\cos\theta$ is positive and $(1+\cos\theta)$ is always greater than 1.	2 Marks
	• Force excerted by jet on symmetrical curved vane at centre with tip angle θ is maximum.	
	Justification: • Force executed by jet an symmetrical curved your at centre with tip angle A is	
	Force excerted by jet on symmetrical curved vane at centre with tip angle θ is maximum.	
	$F = \rho A V^2 (1 + \cos \theta)$	
	iii) Force Excerted by jet on symmetrical curved vane at centre with tip angle θ	2 Marks
	ii) Force excerted by jet on flate plate inclined at an angle $\theta = \rho A V^2 \sin \theta$	1 Marks
Ans:	i) Force excerted by jet on flate plate normally $= \rho A V^2$	1 Marks
c)	A jet moving with a velocity of V m/s is made to strike a stationary i) flat plate normally ii) flat inclined at an angle θ iii)symmetrical curved vane at centre with tip angle θ In which case the force exerted by the jet is maximum? Justify with suitable sketch and formula.	
		2 Marks
	$\eta = (H-h_f)/H = (509.7-101.94)/509.7 = 0.8 = 80\%$	
	2) Efficiency of power Transmission	
	d=0.1069 m	
	$d^{3/2}=0.035$	2 Marks
	$110 \times 10^3 = 1000 \times 9.81 \times (\Pi/4) \times d^2 \times d^{1/2} \times (509.7 - 101.94)$	
	$110 \times 10^3 = 1000 \times 9.81 \times (\Pi/4) \times d^2 \times V \times (509.7 - 101.94)$	
	Power transmitted through pipe $P = \rho gQ(H-h_f)/1000$ kW	
	Head available at the end of pipe = $H-h_f$	
	$v = 19.06 d^{1/2}$	2 Marks
	$101.94 = 0.0055 \times 1000 \times v^2 / (2 \times 9.81 \text{ d})$	
	$h_f = fLV^2/2gd$	



The main parts of the Francis turbine are: 1) Penstock: It is the large pipe which conveys water from the upstream of the reservoir to the turbine runner. 2) Spiral casing: It is a closed passage whose cross sectional area gradually decreases along the flow direction. Area is maximum at the inlet and nearly zero at the outlet. 3) Guide vanes: These vanes direct the water onto the runner at an angle appropriate to the design. 4) Runner and runner blades: The driving force on the runner is both due to impulse and reaction effect. The number if a runner blade usually varies between 16 to 24. 5) Draft tube: It is gradually expanding tube which discharges the water passing through the runner to the tail race. Working 1) It is inward mixed flow reaction turbine i.e. Water under the pressure enters the runner from the guide vanes towards the centre in the radial direction and discharge out axially. 2) It operates under the medium head and medium discharge. 3) water is brought down to the turbine through the benstock and directed to the guide vanes which direct the water onto the runner at an angle appropriate to the design. 4) In the Francis turbine runner is always full of water. After doing the work the water is discharge to the trail race through the draft tubes. 5 In the Francis turbine runner is always full of water. After doing the work the water is discharge to the trail race through the draft tubes. 6 Given: H _m =Manometric head=14.5m N=1000rpm, Φ=Vane angle at outlet=300 D2=Diameter at outlet=300mm=0.5m Runner blade OUR CENTERS:		Τ		 		
reservoir to the turbine runner. 2) Spiral casing: It is a closed passage whose cross sectional area gradually decreases along the flow direction. Area is maximum at the inlet and nearly zero at the outlet. 3) Guide vanes: These vanes direct the water onto the runner at an angle appropriate to the design. 4) Runner and runner blades: The driving force on the runner is both due to impulse and reaction effect. The number if a runner blade usually varies between 16 to 24. 5) Draft tube: It is gradually expanding tube which discharges the water passing through the runner to the tail race. Working 1) It is inward mixed flow reaction turbine i.e. Water under the pressure enters the runner from the guide vanes towards the centre in the radial direction and discharge out axially. 2) It operates under the medium head and medium discharge. 3) water is brought down to the turbine through the penstock and directed to the guide vanes which direct the water onto the runner at an angle appropriate to the design. 4) In the Francis turbine runner is always full of water. After doing the work the water is discharge to the trail race through the draft tubes. 2 Marks Cuide blades are a full force. Guide wheed From penstock Guide blades are a full force and a full f		1				
2 Marks 3 Guide vanes: These vanes direct the water onto the runner at an angle appropriate to the design. 4 Runner blade size the mater in the radial direction and discharge out axially. 2 Marks 3 Guide vanes which direct the water onto the runner is both due to impulse and reaction effect. The number if a runner blade usually varies between 16 to 24. 5 Draft tube: It is gradually expanding tube which discharges the water passing through the runner to the tail race. Working 1) It is inward mixed flow reaction turbine i.e. Water under the pressure enters the runner from the guide vanes towards the centre in the radial direction and discharge out axially. 2) It operates under the medium head and medium discharge. 3) water is brought down to the turbine through the benslock and directed to the guide vanes which direct the water onto the runner at an angle appropriate to the design. 4) In the Francis turbine runner is always full of water. After doing the work the water is discharge to the frail race through the draft tubes. 2 Marks Guide blades 3 Guide wheel 4 In the Francis turbine runner is always full of water. After doing the work the water is discharge to the frail race through the draft tubes. 2 Marks 4 In the Francis turbine runner is always full of water. After doing the work the water is discharge to the frail race through the draft tubes.						
decreases along the flow direction. Area is maximum at the inlet and nearly zero at the outlet. 3) Guide vanes: These vanes direct the water onto the runner at an angle appropriate to the design. 4) Runner and runner blades: The driving force on the runner is both due to impulse and reaction effect. The number if a runner blade usually varies between 16 to 24. 5) Draft tube: It is gradually expanding tube which discharges the water passing through the runner to the tail race. Working 1) It is inward mixed flow reaction turbine i.e. Water under the pressure enters the runner from the guide vanes towards the centre in the radial direction and discharge out axially. 2) It operates under the medium head and medium discharge. 3) water is brought down to the turbine through the bensfock and directed to the guide vanes which direct the water onto the runner at an angle appropriate to the design. 4) In the Francis turbine runner is always full of water. After doing the work the water is discharge to the train race through the draft tubes. Prom penstock Guide blades Guide blades praduating Ans: Given: Hm=Manometric head=14.5m N=1000rpm, Φ=Vane angle at outlet=300 D2=Diameter at outlet=300mm=0.5m & η _{mano} = 0.95 & η _{σaver} = 0.90 OUR CENTERS:						
along the flow direction. Area is maximum at the inlet and nearly zero at the outlet. 3) Guide vanes: These vanes direct the water onto the runner at an angle appropriate to the design. 4) Runner and runner blades: The driving force on the runner is both due to impulse and reaction effect. The number if a runner blade usually varies between 16 to 24. 5) Draft tube: It is gradually expanding tube which discharges the water passing through the runner to the tail race. Working 1) It is inward mixed flow reaction turbine i.e. Water under the pressure enters the runner from the guide vanes towards the centre in the radial direction and discharge out axially. 2) It operates under the medium head and medium discharge. 3) water is brought down to the turbine through the pensiock and directed to the guide vanes which direct the water onto the runner at an angle appropriate to the design. 4) In the Francis turbine runner is always full of water. After doing the work the water is discharge to the trail race through the draft tubes. 2 Marks 6 Guide wheel Ans: Given: H _m =Manometric head=14.5m N=1000rpm, Φ=Vane angle at outlet=300 D2=Diameter at outlet=300mm=0.3m B2=Width at the outlet=50mm=0.05m & η _{maxio} = 0.95 & η _{parsio} = 0.90 OUR CENTERS:						
3) Guide vanes: These vanes direct the water onto the runner at an angle appropriate to the design. 4) Runner and runner blades: The driving force on the runner is both due to impulse and reaction effect. The number if a runner blade usually varies between 16 to 24. 5) Draft tube: It is gradually expanding tube which discharges the water passing through the runner from the tail race. Working 1) It is inward mixed flow reaction turbine i.e. Water under the pressure enters the runner from the guide vanes towards the centre in the radial direction and discharge out axially. 2) It operates under the medium head and medium discharge. 3) water is brought down to the turbine through the penstock and directed to the guide vanes which direct the water onto the runner at an angle appropriate to the design. 4) In the Francis turbine runner is always full of water. After doing the work the water is discharge to the land race through the draft tubes. 2 Marks Cuide blades Prom penstock Guide wheel Ans: Given: Hm=Manometric head=14.5m N=10007pm, Φ=Vane angle at outlet=300 D2=Diameter at outlet=300mm=0.5m & \(\text{purer} = 0.95 \) & \(\text{purer} = 0.90 \) OUR CENTERS:						
appropriate to the design. 4) Runner and runner blades: The driving force on the runner is both due to impulse and reaction effect. The number if a runner blade usually varies between 16 to 24. 5) Draft tube: It is gradually expanding tube which discharges the water passing through the runner to the tail race. Working 1) It is inward mixed flow reaction turbine i.e. Water under the pressure enters the runner from the guide vanes towards the centre in the radial direction and discharge out axially. 2) It operates under the medium head and medium discharge. 3) water is brought down to the turbine through the penstock and directed to the guide vanes which direct the water onto the numer at an angle appropriate to the design. 4) In the Francis turbine runner is always full of water. After doing the work the water is discharge to the trail race through the draft tubes. 2 Marks Cuide wheel From penstock Guide blades and a specific proper is a parane in the pr						
4) Runner and runner blades: The driving force on the runner is both due to impulse and reaction effect. The number if a runner blade usually varies between 16 to 24. 5) Draft tube: It is gradually expanding tube which discharges the water passing through the runner to the tail race. Working 1) It is inward mixed flow reaction turbine i.e. Water under the pressure enters the runner from the guide vanes towards the centre in the radial direction and discharge out axially. 2) It operates under the medium head and medium discharge. 3) water is brought down to the turbine through the penstock and directed to the guide vanes which direct the water onto the number at an angle appropriate to the design. 4) In the Francis turbine runner is always full of water. After doing the work the water is discharge to the trail race through the draft tubes. Shaft Guide blades paralysising Guide wheel From penstock Guide wheel From penstock Guide wheel Ans: Given: H _m =Manometric head=14.5m N=1000rpm, Φ=Vane angle at outlet=300 D2=Diameter at outlet=300mm=0.3m B2=Width at the outlet=50mm=0.05m & η _{mano} = 0.95 &η _{over} = 0.90 OUR CENTERN:						
and reaction effect. The number if a runner blade usually varies between 16 to 24. 5) Draft tube: It is gradually expanding tube which discharges the water passing through the runner to the tail race. Working 1) It is inward mixed flow reaction turbine i.e. Water under the pressure enters the runner from the guide vanes towards the centre in the radial direction and discharge out axially. 2) It operates under the medium head and medium discharge. 3) water is brought down to the turbine through the pensibek and directed to the guide vanes which direct the water onto the runner at an angle appropriate to the design. 4) In the Francis turbine runner is always full of water. After doing the work the water is discharge to the trail race through the draft tubes. 2) Marks 2) Marks 4) Marks Cuide wheel From penstock Guide blades parally asing Guide wheel From penstock Guide wheel From penstock Runner blade N=1000rpm , Φ-Vane angle at outlet=300 D2=Diameter at outlet=300mm=0.3m B2=Width at the outlet=500mm=0.05m & η _{manus} = 0.95 & η _{overr} = 0.90 OUR CENTERN:						
5) Draft tube: It is gradually expanding tube which discharges the water passing through the runner to the tail race. Working 1) It is inward mixed flow reaction turbine i.e. Water under the pressure enters the runner from the guide vanes towards the centre in the radial direction and discharge out axially. 2) It operates under the medium head and medium discharge. 3) water is brought down to the turbine through the pensiock and directed to the guide vanes which direct the water onto the runner at an angle appropriate to the design. 4) In the Francis turbine runner is always full of water. After doing the work the water is discharge to the trail race through the draft tubes. Shaft Guide blade Spiral yasing Caude blade Spiral yasing Ans: Given: H _m =Manometric head=14.5m N=1000rpm, Φ=Vane angle at outlet=30 D2=Diameter at outlet=300mm=0.3m B2=Width at the outlet=50mm=0.05m & η _{μπαρο} = 0.95 & η _{μπαρο} = 0.90 OUR CENTERS:						
through the runner to the tail race. Working 1) It is inward mixed flow reaction turbine i.e. Water under the pressure enters the runner from the guide vanes towards the centre in the radial direction and discharge out axially. 2) It operates under the medium head and medium discharge. 3) water is brought down to the turbine through the penstock and directed to the guide vanes which direct the water onto the punner at an angle appropriate to the design. 4) In the Francis turbine runner is always full of water. After doing the work the water is discharge to the tradf race through the draft tubes. Shaft Guide blades spirally assing. Prom penstock Guide wheel Ans: Given: H _m =Manometric head=14.5m N=1000rpm, Φ=Vane angle at outlet=300 D2=Diameter at outlet=300mm=0.3m B2=Width at the outlet=50mm=0.05m & η _{μιαμο} = 0.95 & η _{συσε} = 0.90 OUR CENTERS:						
Working 1) It is inward mixed flow reaction turbine i.e. Water under the pressure enters the runner from the guide vanes towards the centre in the radial direction and discharge out axially. 2) It operates under the medium head and medium discharge. 3) water is brought down to the turbine through the pensiock and directed to the guide vanes which direct the water onto the runner at an angle appropriate to the design. 4) In the Francis turbine runner is always full of water. After doing the work the water is discharge to the trail race through the draft tubes. Shaft Guide blades Spiral vasing Tail race Ans: Given: H _m =Manometric head=14.5m N=1000rpm, Φ=Vane angle at outlet=300 D2=Diameter at outlet=300mm=0.3m B2=Width at the outlet=50mm=0.05m & η _{ππου} = 0.95 & η _{συσυ} = 0.90 OUR CENTERS:						
1) It is inward mixed flow reaction turbine i.e. Water under the pressure enters the runner from the guide vanes towards the centre in the radial direction and discharge out axially. 2) It operates under the medium head and medium discharge. 3) water is brought down to the turbine through the pensock and directed to the guide vanes which direct the water onto the runner at an angle appropriate to the design. 4) In the Francis turbine runner is always full of water. After doing the work the water is discharge to the trail race through the draft tubes. 2 Marks Guide blades Spiral vasing From penstock Guide wheel From penstock Guide wheel From penstock Guide wheel From penstock Guide wheel From penstock From penstock Ans: Given: H _m =Manometric head=14.5m N=1000rpm, Φ=Vane angle at outlet=300 D2=Diameter at outlet=300mm=0.3m B2=Width at the outlet=50mm=0.05m & η _{mano} = 0.95 & η _{συνν} = 0.90 OUR CENTERS:						
runner from the guide vanes towards the centre in the radial direction and discharge out axially. 2) It operates under the medium head and medium discharge. 3) water is brought down to the turbine through the penstock and directed to the guide vanes which direct the water onto the runner at an angle appropriate to the design. 4) In the Francis turbine runner is always full of water. After doing the work the water is discharge to the trail race through the draft tubes. 2 Marks 2 Marks Guide blades Spiral vasing Ans: Given: Hm=Manometric head=14.5m N=1000rpm, Φ=Vane angle at outlet=300 D2=Diameter at outlet=300mm=0.3m B2=Width at the outlet=50mm=0.05m & η _{mano} = 0.95 & η _{over} = 0.90 OUR CENTERS:						
2) It operates under the medium head and medium discharge. 3) water is brought down to the turbine through the penstock and directed to the guide vanes which direct the water onto the runner at an angle appropriate to the design. 4) In the Francis turbine runner is always full of water. After doing the work the water is discharge to the trail race through the draft tubes. 2 Marks 2 Marks Cuide blads Spiral vasing Guide wheel From penstock Guide wheel From penstock Guide wheel From penstock Guide blads/vanes From penstock Guide wheel From penstock Ans: Given: Hm=Manometric head=14.5m N=1000rpm, Φ=Vane angle at outlet=300 D2=Diameter at outlet=300mm=0.3m B2=Width at the outlet=50mm=0.05m & η _{nuano} = 0.95 & η _{over} = 0.90 OUR CENTERS:			runner from the guide vanes towards the centre in the radial direction and discharge			
3) water is brought down to the turbine through the fensiock and directed to the guide vanes which direct the water onto the runner at an angle appropriate to the design. 4) In the Francis turbine runner is always full of water. After doing the work the water is discharge to the trail race through the draft tubes. 2 Marks 2 Marks Ans: Guide blades Spiral rasing Cuide wheel From penstock Guide wheel Ans: Given: H _m =Manometric head=14.5m N=1000rpm, Φ=Vane angle at outlet=300 D2=Diameter at outlet=300mm=0.3m B2=Width at the outlet=50mm=0.05m & η _{mano} = 0.95 & η _{over} = 0.90 OUR CENTERS:						
guide vanes which direct the water onto the numer at an angle appropriate to the design. 4) In the Francis turbine runner is always full of water. After doing the work the water is discharge to the trail race through the draft tubes. Shaft Guide blads Spiral asing 2 Marks 2 Marks Ans: Given: H _m =Manometric head=14.5m N=1000rpm, Φ=Vane angle at outlet=300 D2=Diameter at outlet=300mm=0.3m B2=Width at the outlet=50mm=0.05 m & \$\eta_{numer} = 0.95 & \partial_{numer} = 0.90 \\ OUR CENTERS:						
design. 4) In the Francis turbine runner is always full of water. After doing the work the water is discharge to the trail race through the draft tubes. 2 Marks Spiral rasing Tail race Guide wheel Guide wheel Guide wheel Guide wheel Guide wheel Hm=Manometric head=14.5m N=1000rpm , Φ=Vane angle at outlet=300 D2=Diameter at outlet=300mm=0.3m B2=Width at the outlet=50mm=0.05m & η _{nunno} = 0.95 & η _{over} = 0.90 OUR CENTERS:						
4) In the Francis turbine runner is always full of water. After doing the work the water is discharge to the trail race through the draft tubes. 2 Marks Shaft Guide blades Spiral vasing Tail race Guide wheel From penstock From penstock Guide wheel From penstock Guide wheel From penstock From penstock From penstock Guide wheel From penstock From penstoc				2 Marks		
After doing the work the water is discharge to the trail race through the draft tubes. Coulde blades Spiral sasing						
Spiral vasing 2 Marks Ans: Given: H _m =Manometric head=14.5m N=1000rpm, Φ=Vane angle at outlet=300 D2=Diameter at outlet=300mm=0.3m B2=Width at the outlet=50mm=0.05m & η _{mano} = 0.95 & η _{over} = 0.90 OUR CENTERS:						
Spiral vasing 2 Marks Ans: Given: H _m =Manometric head=14.5m N=1000rpm, Φ=Vane angle at outlet=300 D2=Diameter at outlet=300mm=0.3m B2=Width at the outlet=50mm=0.05m & η _{mano} = 0.95 & η _{over} = 0.90 OUR CENTERS:			Shaft			
Ans: Given: H _m =Manometric head=14.5m N=1000rpm, Φ=Vane angle at outlet=300 D2=Diameter at outlet=300mm=0.3m B2=Width at the outlet=50mm=0.05m & η _{mano} = 0.95 &η _{over} = 0.90 OUR CENTERS:			/ Guide blades			
Ans: Given: H _m =Manometric head=14.5m N=1000rpm, Φ=Vane angle at outlet=300 D2=Diameter at outlet=300mm=0.3m B2=Width at the outlet=50mm=0.05m & η _{mano} = 0.95 & η _{over} = 0.90 OUR CENTERS:			Spiral casing			
Ans: Given: H _m =Manometric head=14.5m N=1000rpm, Φ=Vane angle at outlet=300 D2=Diameter at outlet=300mm=0.3m B2=Width at the outlet=50mm=0.05m & η _{mano} = 0.95 & η _{over} = 0.90 OUR CENTERS:			Example			
Draft tube Tail race Guide wheel Bunner blade Ans: Given: H _m =Manometric head=14.5m N=1000rpm, Φ=Vane angle at outlet=300 D2=Diameter at outlet=300mm=0.3m B2=Width at the outlet=50mm=0.05m & η _{mano} = 0.95 & η _{over} = 0.90 OUR CENTERS:			ker velocity (to the telephone) in the second of the secon			
Tail race Guide wheel Guide wheel Blades/vanes Guide blades/vanes Runner blade Ans: Given: H _m =Manometric head=14.5m N=1000rpm, Φ=Vane angle at outlet=300 D2=Diameter at outlet=300mm=0.3m B2=Width at the outlet=50mm=0.05m & η _{mano} = 0.95 &η _{over} = 0.90 OUR CENTERS:			2.5 to Runner			
Ans: Given: H _m =Manometric head=14.5m N=1000rpm , Φ=Vane angle at outlet=30 ⁰ D2=Diameter at outlet=300mm=0.3m B2=Width at the outlet=50mm=0.05m & η _{mano} = 0.95 &η _{over} = 0.90 OUR CENTERS:			T			
From penstock Guide wheel Ans: Given: $H_m=Manometric\ head=14.5m$ $N=1000rpm\ ,\ \Phi=Vane\ angle\ at\ outlet=30^0$ $D2=Diameter\ at\ outlet=300mm=0.3m$ $B2=Width\ at\ the\ outlet=50mm=0.05m\ \&\ \eta_{mano}=0.95\ \&\eta_{over}=0.90$ OUR CENTERS:			0.5 to 1 D			
From penstock Guide wheel Ans: Given: $H_m=Manometric\ head=14.5m$ $N=1000rpm\ ,\ \Phi=Vane\ angle\ at\ outlet=30^0$ $D2=Diameter\ at\ outlet=300mm=0.3m$ $B2=Width\ at\ the\ outlet=50mm=0.05m\ \&\ \eta_{mano}=0.95\ \&\eta_{over}=0.90$ OUR CENTERS:			the state of the s			
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Cuid-standard -			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		30 Alana (1997)				
Ans: Given: $H_{m}=\text{Manometric head}=14.5m$ $N=1000\text{rpm , }\Phi=\text{Vane angle at outlet}=30^{0}$ $D2=\text{Diameter at outlet}=300\text{mm}=0.3\text{m}$ $B2=\text{Width at the outlet}=50\text{mm}=0.05\text{m & }\eta_{mano}=0.95\text{ & }\eta_{over}=0.90$ $OUR CENTERS:$			Guide			
Ans: Given: Hm=Manometric head=14.5m N=1000rpm, Φ =Vane angle at outlet=300 D2=Diameter at outlet=300mm=0.3m B2=Width at the outlet=50mm=0.05m & $\eta_{mano} = 0.95 \ \& \eta_{over} = 0.90$ OUR CENTERS:			5.75 (ACC) 1.15 (ACC) 1.05 (ACC)			
b) N=1000rpm , Φ =Vane angle at outlet=30 ⁰ D2=Diameter at outlet=300mm=0.3m B2=Width at the outlet=50mm=0.05m & $\eta_{mano}=0.95$ & $\eta_{over}=0.90$ OUR CENTERS :		Ans:				
N=1000rpm , Φ =Vane angle at outlet=30° D2=Diameter at outlet=300mm=0.3m B2=Width at the outlet=50mm=0.05m & $\eta_{mano}=0.95$ & $\eta_{over}=0.90$ OUR CENTERS :			H _m =Manometric head=14.5m			
B2=Width at the outlet=50mm=0.05m & $\eta_{mano} = 0.95 \ \& \eta_{over} = 0.90$ OUR CENTERS:	b)		N=1000rpm , Φ =Vane angle at outlet=30 ⁰			
OUR CENTERS:		D2=Diameter at outlet=300mm=0.3m				
OUR CENTERS:			· · · · · · · · · · · · · · · · · · ·			
KAI VAN I DOMDIVI I I THANE I NEDIH I DADAD		OUR CENTERS:				

DEGREE & DIPLOMA
ENGINEERING

(ISO/IEC - 27001 - 2013 Certified)

~ 1	•	
V. (1)	lution	٠
120	шисн	_

1) Theoretical Discharge

$$Q_{th} = ALN/60$$

$$= (\Pi/4) \times D^2 \times LN/60$$

 $= (\Pi/4) \times 0.3^2 \times 0.3 \times 50/60$

$$= 0.0176 \quad m^3/s$$

2) Slip =
$$Q_{th}$$
- Q_{act} = 0.021-0.0176 = 0.0034 m³/s

3) Power required to run the pump

 $P = \rho g \ A \ LN \ (Hs + Hd) / 60000 \ kW$

 $P=1000 \times 9.81 \times (\Pi/4) \times 0.3^2 \times 0.3 \times 50 \times (3.5+11.5) /60000$

P = 2.6 kW

2 Marks

2 Marks

2 Marks

OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228